Existence of Solutions to Anti-Periodic Boundary Value Problem for Nonlinear Fractional Differential Equations with Impulses
نویسندگان
چکیده
This paper discusses the existence of solutions to antiperiodic boundary value problem for nonlinear impulsive fractional differential equations. By using Banach fixed point theorem, Schaefer fixed point theorem, and nonlinear alternative of Leray-Schauder type theorem, some existence results of solutions are obtained. An example is given to illustrate the main result.
منابع مشابه
Existence of solutions for nonlinear fractional differential equations with impulses and anti-periodic boundary conditions
In this paper, we prove the existence of solutions for an anti-periodic boundary value problem of nonlinear impulsive fractional differential equations by applying some known fixed point theorems. Some examples are presented to illustrate the main results.
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملAn existence result for n^{th}-order nonlinear fractional differential equations
In this paper, we investigate the existence of solutions of some three-point boundary value problems for n-th order nonlinear fractional differential equations with higher boundary conditions by using a fixed point theorem on cones.
متن کامل